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COUNTABLE SETS
Definition:
Two sets A and B are said to be equivalent if there exists a bijection of from A to B.
Example 1.
Let A=Nand B ={2-4,6...,.2n,...}.

Then f:A—B defined by f(n) = 2n is a bijection.
Hence A is equivalent to B even though A has actually ‘more’ elements than B.

Example 2.

N is equivalent to Z.
The function f:N—Z defined by

f(n) ={ n/2if nis even, (1-n)/2 if n is odd.

Is a bijection.
Hence N is equivalent to Z.



e —

A set A is said to be countably infinite if A is equivalent to the set of natural numbers N.

Definition:
/

A is said to be countable if it is finite or countably infinite.
Note:

Let A be a countably infinite set.

Then there is a bijection of from N to A.

Let f(1) = a4, f(2) = az, f(n) =an, ....

Then A ={ay, az, ..., all, ..}.

Thus all the elements of A can be labelled by using the elements of N.

Example: 1
{2,4,6, ..., 2n, ...} is a countable set.

Example: 2
Z IS countable.

Example 3

Let A={1/2, 2/3, 3/4, ...}.

The function f:N—A defined by f(n) = n/(n+1) is a bijection.
Hence A is countable.



A subset of a countable set is countable.

Theorem 1.

PROOF:

Let A be a countable set and let B € A.

If A or B is finite, then obviously B is countable.

Hence let A and B be both infinite.

Since A is countably infinite, we can write A = {a4, az, ..., an, ...}
Let an, be the first element in A such that a,, € B.

Let an, be the first element in A which follows an, such that an, € B.
Proceeding like this we get B = { ans, anz, ... }-

Thus all the elements of B can be labelled by using the elements of N.

Hence B is countable.



 _~THEOREM 2.
Q" is countable.
PROOF:

Take all positive rational numbers whose numerator and denominator add up to 2.
We have only one number namely 1/1.
Next we take all positive rational numbers whose numerator and denominator add up to 3.

We have 1/2 and 2/1.

Next we take all positive rational numbers whose numerator and denominator add up to 4.
We have 3/1, 2/2 and 1/3.

Proceeding like this, we can list all the positive rational numbers together from the beginning
omitting those which are already listed.

Thus we obtain the set {1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4, ... }.
This set contains every positive rational number each occurring exactly once.

Thus QT is countable.



THEOREM 3.
/

i Q is countable.
PROOF.

We know that Q™ is countable.

LetQ" ={ry, ra, ..., M, ... }.

<~ Q={0, £rq, £r,, ..., £ 1y, ...}

Let f: N — Q be defined by f(1) = 0, f(2n) = ry and f(2n-1) = - ry,.
Clearly f is a bijection and hence Q is countable.

THEOREM 4.
Product of two countable sets is countable is countable.
PROOF.

We assume that A and B are countably infinite.
Let A ={a,, az, ..., an, ...}; B={b4, by, ..., by, ... }.
Now define f: NxN — AxB by 1(i, j) = (ai, bi).
We claim that f is a bijection.

Suppose x = (p, ) € NxN and y = (u, v) € NxN.
Now f(x) = f(y) = (ap, bg) = (au, bv)

= ap = ay, bq = by

= p=uandq=vVv

= (P, q) = (u, v)

= X =Y.



Now, suppose (am, bn) € AxB.

Then (m, n) € NxN and f(m, n) = (am, a,).

=~ fis onto.

Hence f is a bijection.

Hence AxB is equivalent to NxN which is countable.

THEOREM 5:

Let A be a countably infinite set and f be a mapping of A onto a set B. Then B is
countable.

PROOF:

Let A be a countably infinite set and f: A — B be an onto map.
Letb € B.

Since f is onto, there exits at least one pre-image for b.

Choose one element a € A such that f(a) = b.

Now, define g: B — A by g(b) = a.

Clearly g is 1-1.

=~ B i1s equivalent to a subset of the countable set A.

=~ B is countable.



THEOREM 6:
/

Countable union of countable sets is countable.
PROOF:

Let S={A1, Az, ..., An, ...} be a countable family of countable sets.
Case (i)

Let each Ai be countably infinite.

Let Ay ={ai1, @12, ..., 1N, ...}

A, ={az1, 232, ..., 32n...}....

Now we define a map f: NxXN — U Ai by f(i, j) = alij.

Clearly f is onto.

Also by theorem , NxN is countably infinite.

Then U Al is countably infinite.

Case (ii)

Let each A; be countable.

For each 1 choose a set B; such that B; is a countably infinite set and A; € B;
Then UA; € UB..

Now, UB; is countable (by case 1))

~ UA, 1s countable.



SOLVED PROBLEMS.

Any countably infinite set is equivalent to a proper subset of itself.

Solution:

Let A be a countably infinite set.
Hence A = {a,4, a5, ..., an, ..... .

Let B = {a, as, ..., an, ... }.

Clearly B is a proper subset of A.
Define a map f: A — B by f(a,) = an+1
Clearly f is a bijection.

Hence A\ is equivalent to B.

\



.. i

m set contains a countably infinite subset.

Soln.

Let A be an infinite set.

Choose any element a; € A.

Now, since A is an infinite set, we can choose another element, a, € A - {a,}.
Now, suppose we have chosen a4, a,, ..., a, from A.

Since A is infinite, A - {a4, a,, ..., a, } Is also infinite.

We can choose a,.; from A - {a,, a, ..., a, }.

Now, B ={ay, az, ..., &, an+1, ...} 1S @ countably infinite subset of A.



Any infinite set is equivalent to a proper subset of itself.
/

Solution

Let A be an infinite set.

Then, A contains a countably infinite subset B = {a4, az, ..., an, ...}.

Clearly, A=(A-B) U B.

Now consider the following subset C of A givenby C=(A-B) U {a;, a3, .... an, ...} = A - {a1}.
Clearly C is a proper subset of A.

Consider the function f: A — C defined by f(x) =x if x € A - B and f(a,) = an+1

Obviously f is a bijection.

Hence A is equivalent to C.



UNCOUNTABLE SETS
Definition:
A set which is not countable is called an uncountable set.
Theorem 1:
(0, 1) is uncountable.
PROOF:

Every real number in (0, 1) can be written uniquely as a non-terminating decimal 0.a;a,...a,... where
0 <a; <9 for each i subject to the following restriction that any terminating decimal 0.a4a,... a,000...
is written as 0.a;a,as....(2,.1)999...., n

For example 0.54 = 0.53999... 1 = 0.999....

Suppose (0, 1) is countable.

Then the elements of (0, 1) can be listed as {X4, Xz, ..., Xn, ...} Where x; = 0. a;1813...21n..., X2 = 0.
A21822...82n..., Xn = 0. @p18n2.....ann...

Now, for each positive integer n, choose an integer b, such that 0 <b, <9 and b, # anp.

Lety =0.b;b,bs....

Clearly y € (0, 1).

Also y is different from each x; at least in the i-th place,

Hence y # x; for each 1 which is a contradiction.

~ (0, 1) is uncountable.



/Corollary 1.

Any subset A of R which contains (0, 1) is uncountable.
Proof:

Suppose A is countable.

Then any subset of A is countable.

Hence we get (0, 1) is countable which is a contradiction.
~ A'is uncountable.

Corollary 2.

R is uncountable.

The results follow directly by taking A = R

Corollary 3.

The set ‘s’ of irrational numbers 1s uncountable.
Proof:

Suppose s is countable.

We know that Q is countable.

~ S U Q =R is countable which is a contradiction
~ S is uncountable.






