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COUNTABLE SETS 
 

Definition: 

 

Two sets A and B are said to be equivalent if there exists a bijection of from A to B.     

 

Example 1. 

 

Let A = N and B = {2⋅,4,6...,2n,...}.  

Then f:A→B defined by f(n) = 2n is a bijection.  

Hence A is equivalent to B even though A has actually ‘more’ elements than B.     

 

Example 2. 

 

N is equivalent to Z.  

The function f:N→Z defined by      

 

f(n) = { n/2 if n is even, (1-n)/2 if n is odd.     

 

is a bijection.  

Hence N is equivalent to Z.     

 

 



 Definition: 

 

A set A is said to be countably infinite if A is equivalent to the set of natural numbers N.     

 

A is said to be countable if it is finite or countably infinite.     

 

Note: 

 

Let A be a countably infinite set.  

Then there is a bijection of from N to A.  

Let f(1) = a₁, f(2) = a₂, f(n) = an, ....  

Then A = {a₁, a₂, ..., aₙ, ...}.  

Thus all the elements of A can be labelled by using the elements of N.     

 

Example: 1 

{2, 4, 6, ..., 2n, ...} is a countable set.     

 

Example: 2 

Z is countable.     

 

Example 3 

Let A = {1/2, 2/3, 3/4, ...}.  

The function f:N→A defined by f(n) = n/(n+1) is a bijection.  

Hence A is countable.     

 



Theorem 1. 

 

A subset of a countable set is countable.     

 

PROOF: 

 

Let A be a countable set and let B ⊆ A.  

If A or B is finite, then obviously B is countable.  

Hence let A and B be both infinite.  

Since A is countably infinite, we can write A = {a₁, a₂, ..., an, ....}.  

Let an₁ be the first element in A such that an₁ ∈ B.  

Let an₂ be the first element in A which follows an₁ such that an₂ ∈ B.  

Proceeding like this we get B = { an₁, an₂, ...}.  

Thus all the elements of B can be labelled by using the elements of N.  

Hence B is countable.     

 



THEOREM 2. 

 

Q⁺ is countable.     

 

PROOF: 

 

Take all positive rational numbers whose numerator and denominator add up to 2.  

We have only one number namely 1/1.  

Next we take all positive rational numbers whose numerator and denominator add up to 3.  

We have 1/2 and 2/1.     

 

Next we take all positive rational numbers whose numerator and denominator add up to 4.  

We have 3/1, 2/2 and 1/3.  

Proceeding like this, we can list all the positive rational numbers together from the beginning 

omitting those which are already listed.  

Thus we obtain the set {1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4, ...}.  

This set contains every positive rational number each occurring exactly once.  

Thus Q⁺ is countable.     

 



THEOREM 3. 

 

Q is countable.     

 

PROOF. 

 

We know that Q⁺ is countable.  

Let Q⁺ = {r₁, r₂, ..., rn, ...}.  

∴ Q = {0, ±r₁, ±r₂, ..., ± rn, ...}.  

Let f: N → Q be defined by f(1) = 0, f(2n) = rn and f(2n-1) = - rn.  

Clearly f is a bijection and hence Q is countable.     

 

THEOREM 4. 

 

 Product of two countable sets is countable  is countable.     

 

PROOF. 

 

We assume that A and B are countably infinite.  

Let A = {a₁, a₂, ..., an, ...}; B = {b₁, b₂, ..., bn, ...}.  

Now define f: N×N → A×B by f(i, j) = (aᵢ, bi).  

We claim that f is a bijection.  

Suppose x = (p, q) ∈ N×N and y = (u, v) ∈ N×N.  

Now f(x) = f(y) ⇒ (ap, bq) = (au, bv)  

⇒ ap = au, bq = bv  

⇒ p = u and q = v  

⇒ (p, q) = (u, v)  

⇒ x = y.  

 



∴ f is 1-1.  

Now, suppose (am, bn) ∈ A×B.  

Then (m, n) ∈ N×N and f(m, n) = (am, an).  

∴ f is onto.  

Hence f is a bijection.  

Hence A×B is equivalent to N×N which is countable.     

 

THEOREM 5: 

 

Let A be a countably infinite set and f be a mapping of A onto a set B. Then B is 

countable.     

 

PROOF: 

 

Let A be a countably infinite set and f: A → B be an onto map.  

Let b ∈ B.  

Since f is onto, there exits at least one pre-image for b.  

Choose one element a ∈ A such that f(a) = b.  

Now, define g: B → A by g(b) = a.  

Clearly g is 1-1.  

∴ B is equivalent to a subset of the countable set A.  

∴ B is countable.     

 



THEOREM 6: 

 

Countable union of countable sets is countable.     

 

PROOF: 

 

Let S = {A₁, A₂, ..., An, ....} be a countable family of countable sets.  

Case (i) 

Let each Aᵢ be countably infinite.  

Let A₁ = {a₁₁, a₁₂, ..., a₁n, ...} 

A₂ = {a₂₁, a₂₂, ..., a2n...}…. 

Now we define a map f: N×N → ∪ Ai by f(i, j) = aij.  

Clearly f is onto.  

Also by theorem , N×N is countably infinite.  

Then ∪ Ai is countably infinite.     

Case (ii) 

Let each Aᵢ be countable.  

For each i choose a set Bᵢ such that Bᵢ is a countably infinite set and Aᵢ ⊆ Bᵢ 

Then ∪Aᵢ ⊆ ∪Bᵢ.  

Now, ∪Bᵢ is countable (by case i))  

∴ ∪Aᵢ is countable.     

 

 

 



 

SOLVED PROBLEMS. 

 

Any countably infinite set is equivalent to a proper subset of itself.     

 

Solution: 

 

Let A be a countably infinite set.  

Hence A = {a₁, a₂, ..., an, .....}.  

Let B = {a₂, a₃, ..., an, ...}.  

Clearly B is a proper subset of A.  

Define a map f: A → B by f(an) = an+1 

Clearly f is a bijection.  

Hence A is equivalent to B.     

 

   
    
 
 

 

 

 

 



Any infinite set contains a countably infinite subset.     

 

Soln. 

 

Let A be an infinite set.  

Choose any element a₁ ∈ A.  

Now, since A is an infinite set, we can choose another element, a₂ ∈ A - {a₁}.  

Now, suppose we have chosen a₁, a₂, ..., an from A.  

Since A is infinite, A - {a₁, a₂, ..., an } is also infinite.  

We can choose an+1 from A - {a₁, a₂, ..., an }.  

Now, B = {a₁, a₂, ..., an, an+1, ...} is a countably infinite subset of A.     

  

 



Any infinite set is equivalent to a proper subset of itself.     

 

Solution 

 

Let A be an infinite set.  

Then, A contains a countably infinite subset B = {a₁, a₂, ..., an , ...}.  

Clearly, A = (A - B) ∪ B.  

Now consider the following subset C of A given by C = (A - B) ∪ {a₂, a₃, .... an, ...} = A - {a₁}.  

Clearly C is a proper subset of A.  

Consider the function f: A → C defined by f(x) = x if x ∈ A - B and f(an) = an+1 

Obviously f is a bijection.  

Hence A is equivalent to C.     

 



UNCOUNTABLE SETS 

 

Definition: 

 

A set which is not countable is called an uncountable set.     

 

Theorem 1: 

 

(0, 1) is uncountable.     

 

PROOF: 

 

Every real number in (0, 1) can be written uniquely as a non-terminating decimal 0.a₁a₂...an... where 

0 ≤ aᵢ ≤ 9 for each i subject to the following restriction that any terminating decimal 0.a₁a₂... an000... 

is written as 0.a₁a₂a₃....(an-1)999...., n  

For example 0.54 = 0.53999... 1 = 0.999....  

Suppose (0, 1) is countable.  

Then the elements of (0, 1) can be listed as {x₁, x₂, ..., xn, ...} where x₁ = 0. a₁₁a₁₂...a₁n..., x₂ = 0. 

a₂₁a₂₂...a₂n..., xn = 0. an₁an₂.....ann...  

Now, for each positive integer n, choose an integer bn such that 0 ≤ bn ≤ 9 and bn ≠ ann.  

Let y = 0.b₁b₂b₃....  
Clearly y ∈ (0, 1).  

Also y is different from each xᵢ at least in the i-th place,  

Hence y ≠ xᵢ for each i which is a contradiction.  

∴ (0, 1) is uncountable.     

 



Corollary 1. 

 

Any subset A of R which contains (0, 1) is uncountable.     

 

Proof: 

 

Suppose A is countable.  

Then any subset of A is countable.  

Hence we get (0, 1) is countable which is a contradiction.  

∴ A is uncountable.     

 

Corollary 2. 

 

R is uncountable. 

 

The results follow directly by taking A = R 

 

Corollary 3. 

 

The set ‘s’ of irrational numbers is uncountable. 

Proof: 

 

Suppose s is countable. 

We know that Q is countable. 

∴ S ∪ Q = R is countable which is a contradiction 

∴ S is uncountable. 

 

 




