Countable and Uncountable Sets

Class: III B.Sc Maths

Subject:Real Analysis

Subject Code:22SCCMM10

Ms. R. MAHESWARI
Assistant Professor
Department of Mathematics
Shrimati Indira Gandhi College
Trichy.

COUNTABLE SETS

Definition:

Two sets A and B are said to be equivalent if there exists a bijection of from A to B.

Example 1.

Let A = N and $B = \{2.4,6...,2n,...\}$.

Then $f:A \rightarrow B$ defined by f(n) = 2n is a bijection.

Hence A is equivalent to B even though A has actually 'more' elements than B.

Example 2.

N is equivalent to Z.

The function $f: N \rightarrow Z$ defined by

 $f(n) = \{ n/2 \text{ if } n \text{ is even, } (1-n)/2 \text{ if } n \text{ is odd.} \}$

is a bijection.

Hence N is equivalent to Z.

Definition:

A set A is said to be countably infinite if A is equivalent to the set of natural numbers N.

A is said to be countable if it is finite or countably infinite.

Note:

Let A be a countably infinite set.

Then there is a bijection of from N to A.

Let $f(1) = a_1$, $f(2) = a_2$, $f(n) = a_1$,

Then $A = \{a_1, a_2, ..., a \square, ...\}.$

Thus all the elements of A can be labelled by using the elements of N.

Example: 1

{2, 4, 6, ..., 2n, ...} is a countable set.

Example: 2

Z is countable.

Example 3

Let $A = \{1/2, 2/3, 3/4, ...\}.$

The function $f:N \rightarrow A$ defined by f(n) = n/(n+1) is a bijection.

Hence A is countable.

Theorem 1.

A subset of a countable set is countable.

PROOF:

Let A be a countable set and let $B \subseteq A$.

If A or B is finite, then obviously B is countable.

Hence let A and B be both infinite.

Since A is countably infinite, we can write $A = \{a_1, a_2, ..., a_n,\}.$

Let an_1 be the first element in A such that $a_{n1} \in B$.

Let an_2 be the first element in A which follows an_1 such that $an_2 \in B$.

Proceeding like this we get $B = \{a_{n1}, a_{n2}, ...\}.$

Thus all the elements of B can be labelled by using the elements of N.

Hence B is countable.

THEOREM 2.

Q⁺ is countable.

PROOF:

Take all positive rational numbers whose numerator and denominator add up to 2.

We have only one number namely 1/1.

Next we take all positive rational numbers whose numerator and denominator add up to 3.

We have 1/2 and 2/1.

Next we take all positive rational numbers whose numerator and denominator add up to 4.

We have 3/1, 2/2 and 1/3.

Proceeding like this, we can list all the positive rational numbers together from the beginning omitting those which are already listed.

Thus we obtain the set $\{1, 1/2, 2, 3, 1/3, 1/4, 2/3, 3/2, 4, ...\}$.

This set contains every positive rational number each occurring exactly once.

Thus Q⁺ is countable.

THEOREM 3.

Q is countable.

PROOF.

We know that Q^+ is countable. Let $Q^+ = \{r_1, r_2, ..., r_n, ...\}$. $\therefore Q = \{0, \pm r_1, \pm r_2, ..., \pm r_n, ...\}$. Let $f: N \to Q$ be defined by f(1) = 0, $f(2n) = r_n$ and $f(2n-1) = -r_n$. Clearly f is a bijection and hence Q is countable.

THEOREM 4.

Product of two countable sets is countable is countable.

PROOF.

We assume that A and B are countably infinite. Let $A = \{a_1, a_2, ..., a_n, ...\}$; $B = \{b_1, b_2, ..., b_n, ...\}$. Now define $f: N \times N \to A \times B$ by $f(i, j) = (a_i, b_i)$. We claim that f is a bijection. Suppose $x = (p, q) \in N \times N$ and $y = (u, v) \in N \times N$. Now $f(x) = f(y) \Rightarrow (a_p, b_q) = (a_u, b_v)$ $\Rightarrow a_p = a_u, b_q = b_v$ $\Rightarrow p = u$ and q = v $\Rightarrow (p, q) = (u, v)$ $\Rightarrow x = y$.

∴ f is 1-1.

Now, suppose $(a_m, b_n) \in A \times B$.

Then $(m, n) \in N \times N$ and $f(m, n) = (a_m, a_n)$.

∴ f is onto.

Hence f is a bijection.

Hence $A \times B$ is equivalent to $N \times N$ which is countable.

THEOREM 5:

Let A be a countably infinite set and f be a mapping of A onto a set B. Then B is countable.

PROOF:

Let A be a countably infinite set and f: $A \rightarrow B$ be an onto map.

Let $b \in B$.

Since f is onto, there exits at least one pre-image for b.

Choose one element $a \in A$ such that f(a) = b.

Now, define g: $B \rightarrow A$ by g(b) = a.

Clearly g is 1-1.

- ∴ B is equivalent to a subset of the countable set A.
- ∴ B is countable.

THEOREM 6:

Countable union of countable sets is countable.

PROOF:

Let $S = \{A_1, A_2, ..., A_n,\}$ be a countable family of countable sets.

Case (i)

Let each A_i be countably infinite.

Let $A_1 = \{a_{11}, a_{12}, ..., a_{1}n, ...\}$

 $A_2 = \{a_{21}, a_{22}, ..., a2n...\}...$

Now we define a map $f: N \times N \rightarrow U$ Ai by f(i, j) = aij.

Clearly f is onto.

Also by theorem, N×N is countably infinite.

Then ∪ Ai is countably infinite.

Case (ii)

Let each A_i be countable.

For each i choose a set B_i such that B_i is a countably infinite set and $A_i \subseteq B_i$

Then $\bigcup A_i \subseteq \bigcup B_i$.

Now, $\bigcup B_i$ is countable (by case i))

 \therefore UA_i is countable.

SOLVED PROBLEMS.

Any countably infinite set is equivalent to a proper subset of itself.

Solution:

Let A be a countably infinite set.

Hence $A = \{a_1, a_2, ..., a_n,\}.$

Let $B = \{a_2, a_3, ..., a_n, ...\}.$

Clearly B is a proper subset of A.

Define a map $f: A \to B$ by $f(a_n) = a_{n+1}$

Clearly f is a bijection.

Hence A is equivalent to B.

Any infinite set contains a countably infinite subset.

Soln.

Let A be an infinite set.

Choose any element $a_1 \in A$.

Now, since A is an infinite set, we can choose another element, $a_2 \in A - \{a_1\}$.

Now, suppose we have chosen $a_1, a_2, ..., a_n$ from A.

Since A is infinite, A - $\{a_1, a_2, ..., a_n\}$ is also infinite.

We can choose a_{n+1} from A - $\{a_1, a_2, ..., a_n\}$.

Now, $B = \{a_1, a_2, ..., a_n, a_{n+1}, ...\}$ is a countably infinite subset of A.

Any infinite set is equivalent to a proper subset of itself.

Solution

Let A be an infinite set.

Then, A contains a countably infinite subset $B = \{a_1, a_2, ..., a_n, ...\}$.

Clearly, $A = (A - B) \cup B$.

Now consider the following subset C of A given by $C = (A - B) \cup \{a_2, a_3, \dots a_n, \dots\} = A - \{a_1\}.$

Clearly C is a proper subset of A.

Consider the function f: A \rightarrow C defined by f(x) = x if $x \in A - B$ and $f(a_n) = a_{n+1}$

Obviously f is a bijection.

Hence A is equivalent to C.

UNCOUNTABLE SETS

Definition:

A set which is not countable is called an uncountable set.

Theorem 1:

(0, 1) is uncountable.

PROOF:

Every real number in (0, 1) can be written uniquely as a non-terminating decimal $0.a_1a_2...a_n...$ where $0 \le a_i \le 9$ for each i subject to the following restriction that any terminating decimal $0.a_1a_2...a_n000...$ is written as $0.a_1a_2a_3....(a_{n-1})999...., n$

For example 0.54 = 0.53999... 1 = 0.999...

Suppose (0, 1) is countable.

Then the elements of (0, 1) can be listed as $\{x_1, x_2, ..., x_n, ...\}$ where $x_1 = 0$. $a_{11}a_{12}...a_{1n}..., x_2 = 0$.

 $a_{21}a_{22}...a_{2n}..., x_n = 0. a_{n1}a_{n2}.....a_{nn}...$

Now, for each positive integer n, choose an integer b_n such that $0 \le b_n \le 9$ and $b_n \ne a_{nn}$.

Let $y = 0.b_1b_2b_3...$

Clearly $y \in (0, 1)$.

Also y is different from each x_i at least in the i-th place,

Hence $y \neq x_i$ for each i which is a contradiction.

 \therefore (0, 1) is uncountable.

Corollary 1.

Any subset A of R which contains (0, 1) is uncountable.

Proof:

Suppose A is countable.

Then any subset of A is countable.

Hence we get (0, 1) is countable which is a contradiction.

∴ A is uncountable.

Corollary 2.

R is uncountable.

The results follow directly by taking A = R

Corollary 3.

The set 's' of irrational numbers is uncountable.

Proof:

Suppose s is countable.

We know that Q is countable.

- \therefore S \cup Q = R is countable which is a contradiction
- ∴ S is uncountable.

Fumalistacioni com